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We present a review of the physical phenomena that govern the motion of a sailing yacht. Motion
is determined by force, and the forces on a sailing yacht depend on the interactions of the hull and
keel of the yacht with the water and on the interactions of the sail or sails of the yacht with the
air. We discuss these interactions from the perspective of fluid dynamics, governed ultimately by
the Navier-Stokes equation, and show how forces such as lift and drag are achieved by the relative
motion of a viscous fluid around a body. Additionally, we discuss phenomena that are exclusive to
sailing yacht geometries.

I. INTRODUCTION

In the year 1851, about a half century prior to the
first successful flight of a fixed-winged aircraft, the New
York Yacht Club’s schooner yacht won the Royal Yacht
Squadron Cup from the Royal Yacht Squadron (a British
yacht club), and it was thereafter known as the America’s
Cup. This began a series of matches between the holder
of the Cup and a challenger (or challengers) that today
are known as the America’s Cup sailing regattas. In-
terestingly, the New York Yacht Club held the cup for
132 years after it’s first victory until, in 1983, the Royal
Perth Yacht Club challenged and won the Cup with their
Australia II yacht. About 120 years after the first Amer-
ica’s Cup regatta, advances in scientific knowledge had
dramatically altered the world’s understanding of winged
craft; however, particular attention had been paid to air-
craft while sailing craft had been left much less explored.

After an afternoon of recreational sailing with a friend,
scientist and Boeing engineer Arvel Gentry fell for the
sport and decided to apply his knowledge of aerodynam-
ics and fluid mechanics to sailing yachts in an effort to
better understand the physical principles that were at
work on them. To his surprise, much of what he read in
the existing literature on the subject was at least mislead-
ing, if not completely wrong. His first attempt to rectify
the understanding of the interactions of a sailboat with
the wind and water [1] was ill-received by many, but not
all. Indeed, scientist and avid sailor John Letcher took
notice of Gentry’s work and began his own line of re-
search involving the application of computational fluid
dynamics (CFD) to sailing yachts, leading to the first ve-
locity prediction programs (VPPs), which applied CFD
to actual boat geometries and predicted their motion,
or velocity, through the water. Later on, Letcher be-
came the head scientist on Dennis Conner’s team (of the
San Diego Yacht Club) for the Stars & Stripes 87 yacht,
which took the America’s Cup back from the Australians
in 1987 [2].

Today, the 33rd America’s Cup regatta is just around
the corner, to be held in the Mediterranean Sea off the
coast of Valencia, Spain in February, 2010. The regatta
will be a “Deed of Gift” [3] match between the Société
Nautique de Genève (defending the Cup with the Al-

inghi 5 yacht, shown in figure 1a) and the Golden Gate
Yacht Club (challenging the Cup with BMW Oracle Rac-
ing’s BOR 90 yacht, shown in figure 1b). These boats
are direct products of an advanced understanding of the
physics that governs the motion of a sailboat through the
wind and water; respectively, the aero and hydrodynam-
ics of sailing yachts.

This work reviews the physics, consisting mostly of
fluid mechanics phenomena, that applies to sailing yachts
and influences the design of modern sailing vessels, such
as those to be raced in the 33rd America’s Cup regatta. In
section II, the forces that act on a sailing yacht are intro-
duced and discussed. In section III, the fluid mechanics
of viscous fluids flowing around fixed bodies is discussed
to explain the origins of the forces that are introduced
in section II. Section IV discusses contributions to the
forces that are specific to yacht designs and are beyond
the generalization of section III.

II. FORCES ON A SAILING YACHT

Long before the invention of the mechanical engine or
the understanding of fluid mechanics, people attached
sails to boats in order to move them across the water.
These sails acted like parachutes, catching the wind and
moving the boat in the direction of the wind, thereby
limiting the motion of the boat, more or less, to this
direction [4]. While this limited direction of motion is
certainly a drawback of such a design, another setback is
that the boat speed can never exceed the wind speed with
such a simple sail. Nevertheless, boats must sometimes
sail downwind, in which case sails that resemble the more
archaic parachute-like sails must be used. These sails
are called “spinnakers” and, despite the relatively simple
concept of downwind sailing, must be engineered with a
nontrivial knowledge of fluid mechanics.

In addition to employing spinnakers for downwind sail-
ing, modern sailing yachts use other types of sails for sail-
ing in directions (points of sail) other than downwind.
Taller, thinner mainsails and jibs can be used to achieve
a “reach,” or a point of sail that is at an angle to the
wind direction. Such points of sail can be perpendicular
to the wind direction or even have a component against
the wind direction. Such sailing is called “windward”
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FIG. 1: (a) The two-hulled Alinghi 5 yacht of the Société
Nautique de Genève (http://sailracewin.blogspot.com)
(b) The three-hulled BOR 90 yacht of BMW Oracle Racing
(http://bmworacleracing.com)

sailing, and requires a component of force from the wind
on the sail that is perpendicular to the direction of the
wind. This force is called the aerodynamic lift force, ~L.
The force on the sail that is in the direction of the wind
is called the aerodynamic drag force, ~D. These forces are
shown in the force diagram in Figure 2. The vectorial
sum of ~L and ~D gives the total aerodynamic force on
the sail(s), ~FT = ~L + ~D. This force can then be broken
down into components parallel to and perpendicular to
the point of sail, the driving force ~FR and the heeling
force ~FH , respectively.

Interestingly, properly designed keels can generate a
similar lift force as they move through the water to en-
hance windward sailing. This lift is called the hydrody-
namic side force, ~FS . The force on the keel (and the
hull) that is parallel to the apparent motion of the water
is called the hydrodynamic drag force, ~R. These forces
are shown in the force diagram in Figure 3. Like the
aerodynamic forces, the hydrodynamic side force (hydro-
dynamic lift) and hydrodynamic drag can be summed to
give the total hydrodynamic force on the keel and hull,
~RT = ~FS + ~R. The origins of both the aero and hydro-
dynamic lift and drag forces are discussed in section III.
The condition for sailing at a constant velocity is that
the hydrodynamic and aerodynamic forces balance, or
~RT + ~FT = 0.
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FIG. 2: The aerodynamic forces acting on a sailing yacht
as illustrated for a windward point of sail. Here, ~L is the
aerodynamic lift on the sail and ~D is the aerodynamic drag
on the sail.
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FIG. 3: The hydrodynamic forces acting on a sailing yacht
as illustrated for a windward point of sail. Here, ~FS is the
hydrodynamic side force, or lift and ~R is the hydrodynamic
drag. These forces are due to the interactions of both the hull
and keel with the water.

Both aerodynamic and hydrodynamic forces are shown
in Figure 4. In this Figure (and in Figures 2 and 3), β
defines the angle between the point of sail and the origin
of the apparent wind (the wind as measured in the boat’s
frame of reference), λ defines the leeway, or the angle
between the boat axis b̂ and the the point of sail and δm

defines the angle of the sail relative to the boat axis b̂.
In terms of these angles, the angle of attack of the keel is
simply αkeel = λ and the angle of attack of the sail(s) is
αsail = β−λ+δm. The drag angles θa and θh characterize
the aerodynamic and hydrodynamic forces, respectively,
and are such that cot θa = L/D and cot θh = FS/R.

Maximizing the aerodynamic drag D allows for more
efficient downwind sailing while minimizing the aerody-
namic drag and maximizing the aerodynamic lift L makes
for more efficient windward sailing. While it is always
beneficial to minimize hydrodynamic drag, it is impor-
tant to design a keel that will generate significant hy-
drodynamic lift for windward sailing conditions, but not
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FIG. 4: The aero and hydrodynamic forces acting on a sailing
yacht, shown for an equilibrium sailing condition when the
total aerodynamic force plus the total hydrodynamic force
vanishes.

so important to do so for downwind conditions. Fig-
ure 4 illustrates that, at an equilibrium sailing velocity,
cot θh = FH/FR. Maximizing this ratio is necessary for
maximizing performance for all points of sail, so mini-
mizing θh is always key to optimizing the performance
of a sailing yacht. Notice that, when the forces are in
equilibrium, β = θh + θa [5]. Thus, minimizing the drag
angles, or equivalently maximizing the lift-to-drag ratios,
maximizes the extent to which a yacht may sail to wind-
ward.

While the interaction of the wind and water with a
sailing yacht influences its motion in the plane of the
water, it also influences the vertical angle of the yacht,
or the deviation of the yacht from the vector normal to
the surface of the water, ẑ. This is called the heeling
angle, Θ, and is illustrated, with the heeling and righting
torques, in Figure 5. The heeling torque MH , due to the
pressure of the wind on the sail, serves to tilt the yacht
while the righting torque, due to the torque from gravity
acting on the center of mass of the boat relative to the
center of buoyancy and the hydrodynamic forces on the
hull and keel, serves to move the boat more upright. The
heeling torque, in terms of the aerodynamic forces, the
sailing angle β and leeway λ, is given by

MH = Ra [L cos (β − λ) + D sin (β − λ) cos Θ] (1)

and the righting torque, in terms of the hydrodynamic
forces and the leeway, is given by

MR = −Rh [R sinλ cos λ(1 + cos θ)
+FS(cos2 λ− sin2 λ cos Θ)

]
+ RbFb sinΘ (2)

where Fb is the magnitude of the buoyancy (vertical)
force ~Fb = Fbẑ, given by Fb = mg + (L − R sinλ −
FS cos λ) sinΘ. In Eqs. (1) and (2), Ra and Rh repre-
sent the distance from the center of mass of the sailing
yacht to the center of effort of the sail and the center of
effort of the keel and hull, respectively. The centers of

ẑΘMH
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FIG. 5: A two-hulled yacht sailing at a heel angle Θ. The
heeling torque MH (red) is due to the air acting on the sail
and serves to tilt the yacht (increase Θ) and the righting
torque MR (blue) is due to the geometry of the boat and
the action of the water on the yacht and serves to move
the boat upright (decrease Θ). This image was taken from
http://www.sailjuice.com.

effort describe the mean locations at which the aerody-
namic and hydrodynamic forces act. Also, in Eq. (2), Rb

is the distance between the center of mass of the yacht
and the center of buoyancy of the yacht (being the cen-
ter of mass of the water that would be present if the
yacht were not there to displace it). To increase stabil-
ity, many yachts are designed so that Rb increases with
Θ [5]. Multi-hulled yachts, such as those to be raced
in the 2010 America’s Cup, are designed in this way so
that, for moderately small Θ, the buoyancy contribution
to the righting torque is very large. These yachts can
withstand large heeling forces, or large aerodynamic lift,
when sailing at an angle to the wind. In equilibrium sail-
ing conditions, these torques balance themselves so that
MH + MR = 0. To understand the nature of the forces
and torques acting on a sailing yacht, it is essential to
understand the physics of the fluids that generate these
forces and torques.

III. RELEVANT FLUID MECHANICS

A. Properties of Air and Water

All of the fluid mechanics that is relevant to the physics
of sailing depends on the densities of air and water. At
10◦ C and atmospheric pressure (101.325× 103 Pa), the
density of (dry) air is 1.247×10−3 g/cm3 and the density
of pure water is 1.000 g/cm3. At 30◦ C, the density of
(dry) air is 1.164×10−3 g/cm3, while the density of pure
water is approximately the same.

When forces act on these fluids (air and water), their
densities (or equivalently, volumes) may change. This
is characterized by the isothermal compressibility of the
fluid, or κT = −V −1(∂V/∂p)T , describing the unit
change in volume of a fluid with a change in pressure
at a fixed temperature T , where V is the volume of the
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fluid being considered and p is the pressure exerted upon
it [6]. At 10◦ C and atmospheric pressure, the isother-
mal compressibility of dry air is κT air = 9.9 × 10−6

Pa−1 and the isothermal compressibility of pure water
is κT H20 = 4.8× 10−10 Pa−1 [7]; these values remain on
the same order of magnitude with moderate changes in
temperature and pressure.

If there is motion of an object through a fluid (or of
a fluid around an object), there will be some response
in the fluid surrounding this object. This is due to the
transfer of momentum from particle to particle in the
fluid and depends on the nature of the interparticle in-
teractions. This phenomenon can be quantified, however,
without the details of these microscopic interactions by
considering the dynamic viscosity of the fluid, µ, defined
as the force per unit area necessary to change the velocity
of the fluid by one unit per unit distance perpendicular
to the direction of flow. Because of thermal and many-
body effects in the fluid, this quantity must, in general,
be determined empirically. At 10◦ C and atmospheric
pressure, the viscosity of air is µair = 1.77 × 10−5 Pa s
and the viscosity of pure water is µH20 = 1.27 × 10−3

Pa s. At 30◦ C and atmospheric pressure, the viscosity
of air is µair = 1.87× 10−5 Pa s and the viscosity of pure
water is µH20 = 7.77× 10−4 Pa s.

B. Lift and Drag

Consider an inviscid, irrotational fluid with a steady
velocity field ~V = ~V (x, y, z, t) (i.e. ∂V/∂t = 0 and
~∇ × ~V = 0) describing the velocity of the fluid as a
function of space and time, and let ρ be the mass den-
sity of the fluid and p = p(x, y, z, t) the pressure in the
fluid. From the Navier-Stokes equation (derived in the
appendix, Eq. A6),

ρ(~V · ~∇)~V = −~∇p. (3)

Note that (~V · ~∇)~V = ~∇V 2/2 − ~V × (~∇× ~V ) [8]. With
~∇× ~V = 0, Eq. 3 can be rewritten as

~∇
[
1
2
ρV 2 + p

]
· d~s = d

[
1
2
ρV 2 + p

]
= 0 (4)

where d~s is an infinitesimal displacement vector. Thus,
the scalar 1

2ρV 2 +p must be a constant. This constant is
just the value in a background flow with pressure p0 and
speed V0. Thus, Eq. 4 can be written as

p = p0 −
1
2
ρ∆V 2. (5)

where ∆V 2 = V 2 − V 2
0 . This is Bernoulli’s equation (for

irrotational flow), and provides the basic relationship be-
tween pressure and velocity that gives rise to the phe-
nomenon of lift [9], specifically, that flows with greater
velocity exhibit lower pressure.

If a body is immersed in a moving fluid and the fluid
moves faster along one side of the body than along the
other side, Eq. 5 says that there will be a pressure gradi-
ent across the body, and thus a net force across the body.
The element of this force that is perpendicular to the di-
rection of the flow is the lift force L. Eq. (5) shows that
L is proportional to the fluid density times the square of
the flow velocity times an area. If A is the area of a body
in the flow of a fluid with density ρ (say, for example, the
area of a sail), then the lift force can be written as

L =
1
2
CLρAV 2

∞ (6)

where V∞ is the speed of the uniform fluid flow very far
from the body and CL is the dimensionless lift coefficient.
CL depends, in general, on the geometry of the body and
on the orientation of the body in the fluid. Knowing CL

for a given object at a given orientation in a fluid flow
provides all of the information necessary to describe the
lift force on the object.

Similarly, a dimensionless drag coefficient can be de-
fined to characterize the drag on a body in a fluid flow, or
the component of the force on the body in the direction
of the flow. Intuitively, the drag should depend linearly
on the density of the fluid in which the body is immersed
(because force depends linearly on mass) and linearly on
the area of the body that is exposed to the flow because
the volume of fluid that must be displaced as the body
moves through it is proportional to this area. A dimen-
sional argument then leaves the velocity dependent on
the square of the fluid velocity. Thus, the drag force on
the body can be written as

D =
1
2
CDρAV 2

∞ (7)

where CD is the dimensionless drag coefficient. Like CL,
CD depends on the geometry of the body and on the
orientation of the body in the fluid.

C. Effects of Viscosity on Drag

When a fluid has some viscosity, as do water and air, it
adheres to the surface S of an immersed body so the fluid
has no velocity at the surface of the body, or V |S = 0,
which is known as the “no slip” condition. Further from
the surface, however, the fluid has some non-zero velocity
that, because of viscosity, is affected by the motionless
fluid at the surface of the body and the fluid that is mov-
ing at some distance from the body. This fluid creates
what is called the boundary layer, being the layer of fluid
near the surface of the body that is most affected by vis-
cosity. This boundary layer can, in general, be either
laminar or turbulent.

Laminar flow is a steady flow localized near the bound-
ary of the immersed body and is such that the velocity
field of the fluid is smooth along the plane of the surface
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as though the flow consists of layers, or laminae. For this
reason, laminar flow around a body is said to be “stream-
line.” Consider fluid flow with a constant velocity V∞x̂
in two-dimensions (2D) that encounters a boundary de-
fined by y = 0 at the point x = 0 (as an approximate
geometry of a keel or sail). The width of the laminar
boundary layer in this case is given by, as a function of
the distance x along the boundary, [9]

δ = 5.2
√

µx

ρV∞
. (8)

For typical (America’s Cup) sailing speeds of ∼10.3 m/s,
this gives, for a temperature of 10◦ C, pure water and air
laminar widths of δH2O ' 0.60

√
x cm and δair ' 2.0

√
x

cm, respectively, which are quite small compared to the
sizes of the sails and keels on typical sailing yachts.

The shearing of the fluid in the laminar boundary layer
leads to a drag on the body known as frictional resistance.
The magnitude of the force required to shear a fluid is
defined, as described earlier, by the viscosity µ of the
fluid. Thus, the stress that gives rise to this laminar
frictional force (in the 2D case described above) at the
surface of the plane in the flow is the laminar shearing
stress,

τl = µ
∂Vx

∂y
|y=0, (9)

which, in three dimensions (3D), generalizes to the ten-
sor τij = µ (∂Vj/∂xi + ∂Vi/∂xj). While laminar flow
dominates the boundary layer near the leading edge of
the body (where the fluid first encounters its surface),
it, at some point, may separate from the surface due to
the development of an adverse pressure gradient along
the surface of the body; this point is called the separa-
tion point [9]. Downstream from the separation point,
the flow near the surface may reverse direction, leading,
ultimately, to nonlaminar flow with vortices and strong
time dependence which greatly widens the extent of the
boundary layer. This flow is known as turbulent flow.
In qualitative terms, flow in the direction of decreasing
pressure is stable (laminar) but flow into increasing or
adverse pressure is unstable, and will ultimately sepa-
rate and become turbulent. As flow in the boundary
layer resists this pressure increase, it moves away from
the surface, expanding the boundary layer in the turbu-
lent regime.

Because the thickness of the boundary layer for lami-
nar flow is very small, it is a good approximation to treat
the flow outside of the laminar boundary layer as nonvis-
cous and compute the pressure along the surface of the
body by applying Bernoulli’s equation to the flow velocity
along the layer. Because the boundary layer downstream
from the separation point is much wider than the lami-
nar boundary layer, this approximation cannot be used in
this region. The location of the laminar-turbulent tran-
sition can be estimated with accuracy by considering the

dimensionless Reynold’s number of the system, given by

R =
V∞xρ

µ
(10)

where x is the distance downstream along the body. In-
terestingly, fluid flow is found to turn turbulent when
R ' 5 × 105 for all viscous flows, depending, of course,
on the nature of the surface in the flow (form, roughness,
etc.). Using a background velocity of V∞ = 10.3 m/s
and the densities and viscosities of pure water and air at
10◦ C, the distances at which flow turns from laminar
to turbulent in pure water and air are, from a Reynold’s
number analysis, xH2O ' 0.062 m and xair ' 0.68 m,
respectively. Clearly, with typical hull and keel sizes be-
ing much greater than 6 cm, hydrodynamic turbulence
plays an important, unavoidable role in sailing. The
downstream distance for the onset of turbulence in air,
however, is more comparable to the downstream width
(chord) of typical sails. In fact, clever design and usage
of sails can lead to purely streamline airflow about sails
in windward sailing conditions.

Turbulence serves to randomize the motion of the fluid
and thereby flattens the average velocity profile. Be-
cause the “no slip” condition still holds at the surface,
however, the partial derivative (∂Vx/∂y)y=0 is greater in
the turbulent region than in the laminar region. Thus,
the shear stress is greater in turbulent regions, which
leads to a greater contribution of frictional drag in the
turbulent boundary layer. This frictional drag can be
estimated by an effective turbulent viscosity, µt, so the
shear stress on a surface in turbulence is given by τt =
µt ∂Vx/∂y|y=0 [10]. This is discussed further in sec-
tion IV.

Additionally, the phenomenon of separation leads to
another increase in drag known as pressure drag. Be-
cause the width of the boundary layer beyond the point
of separation increases significantly, the pressure on the
body cannot reach values comparable to those acting on
the front of the body where the flow is laminar. Thus,
there is a greater pressure contribution in the direction of
the flow than there is opposing it, and a net “pressure”
drag results. Because both friction and pressure drag de-
pend strongly on the location of the separation point on a
body, and the location of this separation point depends
strongly on the Reynold’s number, the drag force on a
body depends strongly on the Reynold’s number of the
body, specifically, the drag force increases significantly
beyond a critical Reynold’s number due to the phenom-
ena of flow separation and turbulence [11].

D. Effects of Viscosity on Lift

To generate a net lift force in a viscous fluid flow, a
body must exhibit an asymmetry about the direction of
the external flow. An example of such an asymmetry is
the rotation of an otherwise symmetric object about its
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axis, such as a cylinder immersed in a flow with its sym-
metry axis perpendicular to the direction of the flow. Be-
cause of the no-slip condition at the surface of the cylin-
der, the flow is biased to move in one direction around
the cylinder due to the presence of a circulational flow
field generated by the rotation. In this case, the lift force
(per unit distance along its symmetry axis) on the cylin-
der is given by L = ρV∞Γ where Γ is the circulation
of the fluid around the cylinder given by the line integral
Γ =

∮
C

~V ·ds where C is a line that encloses a cross-section
of the cylinder and lies outside of its boundary layer [12].
This is known as the Kutta-Jukowski theorem, and it
generalizes to bodies of arbitrary geometry. Thus, for a
body to experience any lift in a viscous flow, there must
be some non-zero circulation around the body.

Indeed, the designs of sails and keels are such that,
when oriented appropriately, they develop a circulation
flow field around them and thus experience a net lift. As
a simple example of this, consider a flat plate in a 2D
(or cross-sectional 3D) geometry tilted at a small angle
relative to an external viscous flow. As the flow encoun-
ters the leading edge of the plate, it will split and some
will move across the near (upstream) side of the plate
while the rest will move around and across the far (down-
stream) side of the plate. Because of viscosity, the fluid
moving on the downstream side (assuming that the flow
is laminar) will be retarded and travel a shorter distance
than the fluid moving along the upstream side. This will
leave a gap at the end of the downstream side of the plate
and the fluid on the upstream side will bend around the
trailing edge of the plate to fill in this gap. Viscosity
prevents the sharpening of this bend and results in the
creation of a vortex at this trailing edge, which has some
angular momentum. The flow sweeps this vortex down-
stream while another vortex, the circulation flow around
the plate, is formed to conserve the angular momentum
in the system. Because of the Kutta-Jukowski theorem,
this circulation creates a lift force on the plate [13]. This
phenomenon is illustrated in Figure 6. If there were no
circulation about the plate, regardless of its angle of at-
tack, the net lift on the plate would be zero. Additionally,
the direction of the induced circulation about the plate
serves to speed up the flow on the downstream side and
slow down flow on the upstream side, consistent with
lift as is explained by Bernoulli’s equation. It is worth
noting that Bernoulli’s principle and the Kutta-Jukowski
theorem are completely consistent with one another in
explaining the phenomenon of lift.

In general, however, this lift force will be oriented per-
pendicular to the body and not to the external flow, with
the body tilted at an attack angle to the external flow,
as described for keels and sails in section II. This results
in a lift-induced drag (per unit distance perpendicular to
the flow) with force coefficient CD,i = 2Γ sin α/V∞A [9].

In addition to affecting the drag force (as discussed in
section III C), flow separation affects the lift force on a
body, as well. In a laminar boundary layer, the flow is
steady and close to the surface of the body so the effects

FIG. 6: The formation of the starting vortex on a flat plate
tilted at an angle to an otherwise steady flow. (a) The flow
lines on the plate if the fluid were to have zero viscosity. (b)
With some viscosity, the fluid makes a turn from the upstream
side around the trailing edge of the plate to meet the flow on
the downstream side. (c) This bend results in the creation of
a vortex that is swept downstream. To conserve angular mo-
mentum, a circulation is induced around the plate. (d) The
resulting flow lines with the circulation flow field present. Be-
cause the flow lines are closer together on the top of the plate,
the velocity is faster here, and thus, by Bernoulli’s equation,
the pressure is less here and there is a net lift on the plate.
These images were taken from Ref. [13].

of the decrease in pressure due to increase in velocity are
well translated to the body itself. When separation oc-
curs, this pressure is not well translated and the overall
circulation around the body significantly decreases due
to the appearance of turbulence beyond the separation
point, and thus, by the Kutta-Jukowski theorem, de-
creases the lift on the body. Additionally, the turbulent
region beyond the point of separation has greater pres-
sure than it would if the flow were laminar due to the
decrease in average velocity in this region. This serves
to increase the pressure (by Bernoulli’s equation), and
thus decrease the lift on the body. The phenomenon of
flow separation on the leeward side of a sail is known as
“stalling,” and, as mentioned above, significantly reduces
the lifting ability of a sail.

IV. APPLICATION OF FLUID MECHANICS TO
SAILING YACHTS

The examples given above consider 2D flows, or cross
sections of 3D flows that are homogeneous in one direc-
tion. However, we exist in a 3D world, and so do sail-
boats, and this fact changes things, sometimes slightly,
and sometimes significantly. Nevertheless, in both 2D
and 3D, viscous, turbulent fluid dynamics are incredi-
bly complicated to understand; however, simple physical
arguments and observations can provide a basic frame-
work of how certain bodies should be designed in order
to behave predictably in the presence of viscous fluids.
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A. Computational Tools

Beyond these arguments, which are discussed in the
following sections, the determination of the lift and drag
forces (or equivalently the lift and drag coefficients) on a
body in a viscous flow must be calculated numerically
or deduced empirically. The task of calculating force
coefficients numerically (computationally) is very non-
trivial. The main challenge is to model the presence of
turbulence in the flow around the complicated shapes
of a yacht’s keel, hull and sail(s). One way to do this
is to approximate turbulent effects in the velocity field
and pressure manifolds in the Navier-Stokes equation us-
ing the Reynolds-Averaged Navier-Stokes (RANS) equa-
tion. The RANS equation is derived by assuming that
the velocity and pressure fields can be decomposed into
time-independent mean values and time-dependent fluc-
tuations about this mean value,

Vi(x, y, z, t) = V̄i(x, y, z) + V ′
i (x, y, z, t)

p(x, y, z, t) = p̄(x, y, z) + p′(x, y, z, t), (11)

and then plugging these values into Eq. (A7) and aver-
aging over time, which gets rid of the fluctuations that
average to zero over time, ultimately giving an equation
to describe time-averaged turbulence phenomena in the
system. Solving the Navier-Stokes equation exactly for
a given system, on a numerical grid, would require a
number of grid points on the order of R9/4 [14]. With
Reynolds numbers easily exceeding 106 for typical sailing
yachts, this problem becomes incredibly computationally
expensive.

In addition to the RANS formalism, methods have
been developed to model turbulent flow by calculating
the average turbulent dissipation ε and kinetic energy k
of a flow. This is known as the kε model, and has been
shown to be accurate and computationally accessible [15].
In this model, k and ε are determined by solving coupled
transport equations and then the effect of turbulence is
modeled by an effective turbulent viscosity, µt, which can
be written in terms of k and ε.

B. Downwind Sailing

As mentioned in section II, efficiency in downwind sail-
ing requires a minimization of hydrodynamic drag (both
from the keel and the hull) and a maximization of aero-
dynamic drag. Maximization of aerodynamic drag for
downwind sailing is achieved in a number of ways, but
most simply by employing a sail with very large area cast
perpendicular to the direction of the wind, since the drag
force scales with the area of the body being considered.
These sails are known as spinnakers.

However, it is unlikely that a sailor wishes to sail di-
rectly downwind. Instead, downwind sailing typically de-
viates from purely downwind by some small angle. Fig-
ure 7 shows the maximum attainable velocities, calcu-

FIG. 7: The maximum speed of an IACC yacht, calculated
using a VPP, as a function of point of sail relative to the true
wind and true wind speed. Notice that, due to lift effects, the
maximum velocity attainable is not down wind (β = 180◦),
but at a reach almost perpendicular to the true wind direc-
tion. Image taken from Ref. [16].

lated using a VPP (solving RANS), for a typical Inter-
national America’s Cup Class (IACC) yacht sailing at
various angles to the true wind. From this data, an ap-
parent wind speed, being |~va| = |~vt − ~vb| where ~vt is the
true wind speed and ~vb is the velocity of the yacht and
an apparent wind angle, β, can be extracted. These are
shown in Figure 8. Figure 8(a) shows that the apparent
wind speed changes very little with small deviations in
angle from 180◦ (being purely downwind). However, Fig-
ure 8(b) shows that there are strong deviations in appar-
ent wind direction with these small deviations in angle.
Thus, at points of sail close to the direction of the wind,
a spinnaker must produce significant drag but must also
produce significant lift in order to maintain course and
velocity [16]. For a given point of sail, then, there exists
an optimum CL/CD ratio for maintaining course, and
many spinnakers are designed asymmetrically to achieve
this ratio.

Nevertheless, to reach small apparent wind speed, the
hydrodynamic drag must be sufficiently small so the aero-
dynamic forces may dominate the downwind motion of
the yacht. To reduce the hydrodynamic drag on the
hull, appealing to the arguments discussed above, the hull
should be as streamline as possible so as to reduce tur-
bulent friction drag and pressure drag due to separation.
Also, the yacht itself should be as light as possible so as
to minimize the amount of water that the hull displaces
and thus minimize the surface area of the hull that inter-
acts with the water. Additionally, hulls interact with the
water surface and thus create surface waves, which also
contribute to drag. Hull geometries can be generalized
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FIG. 8: Calculated from the data in Figure 7, the apparent
wind speed and apparent wind direction as functions of the
true wind direction for a typical IACC yacht. Image taken
from Ref. [16].

FIG. 9: The experimental drag coefficient for a number of
sailing yacht monohulls as a function of the Froude number.
The coefficient increases significantly at a critical Froude num-
ber due to the hull speed phenomenon. Image taken from
Ref. [17].

by a Froude number,

F =
V∞√
gLref

, (12)

where V∞ is the speed of the yacht, g = 9.8 m/s2 and
Lref is the characteristic downstream length of the hull.
Figure 9 shows experimentally measured drag coefficients
for a number of monohulls as a function of Froude num-
ber [17].

Objects with drag coefficients that scale in this way are
said to “Froude scale,” meaning their drag coefficients
scale with velocity. Notice that at F ' 2.6, correspond-
ing to V∞ ' 2.6

√
gLref , there is a significant increase in

drag. This phenomenon can be understood by consider-
ing the nature of the waves created by the hull of a sailing
yacht as it moves through the water. As the bow of the
yacht encounters water, it displaces a volume of water at
a rate ∝ V∞A where A is the cross-sectional area of the
hull. This water must ultimately be displaced, but the
effect is delayed so that a “bow wave” forms at the bow

of the yacht. This bow wave generates a trailing surface
wave, which is dispersive and has velocity (for small wave
amplitude)

vwave =

√
gλsurf

2π
(13)

where λsurf is the wavelength of the surface wave [18].
When the length of the hull Lref is about the same as
λsurf , the yacht sits nicely atop the peaks of the wave.
However, if λsurf exceeds Lref , the stern of the yacht
will sink into the trough of the bow wave, greatly in-
creasing the cross-sectional area exposed to the water
and thus greatly increasing the drag on the hull. The
boat speed above which this drag increases is the hull
speed, vhull =

√
gLref/2π. From Eqs. (12) and (13), the

Froude number of the yacht when traveling at hull speed
is Fhull =

√
1/2π = 0.399, just above the observed in-

crease in hull drag shown in Fig. 9. The discrepancy here
lies in the fact that the center of gravity of the hulls tested
and reported in Figure 9 are near the center of the hull
at ∼ 0.5Lref . Thus, while the bow wave is being created
at the bow, gravity is acting near the center of the boat.
If the effective length due to the location of the center of
gravity is approximated to be Leff = 0.5Lref , the onset
of drag due to the hull speed phenomenon should occur
at F ' 1/

√
4π = 0.282. This shows that yachts with

longer hulls will experience a significant increase in drag
due to the hull speed phenomenon at greater velocities,
and thus are typically faster than shorter yachts.

C. Windward Sailing

While the minimization of hydrodynamic drag remains
important for windward sailing, the minimization of aero-
dynamic drag is important, as well. In fact, maximizing
the lift to drag ratios CL/CD for both the hydrodynamic
and aerodynamic forces is essential for optimizing wind-
ward sailing, as was shown in section II.

In addition to friction and pressure drags on the keel
and sail(s) of a yacht, drag can arise due to the lift force
having a component in the direction of the water or ap-
parent wind, respectively. This lift induced drag was
shown to be proportional to the total circulation around
the body (keel or sail) in section III D. Indeed, if the
circulation is perfectly elliptical, the lift induced drag co-
efficient can be shown to be CD,i = 1

πγ C2
L, where γ is

the aspect ratio of the body, or the ratio of its down-
stream length (chord) to its width [11]. For bodies that
do not exhibit perfectly elliptical circulation flows, the
proportionality still holds,

CD,i ∝
1

πγ
C2

L, (14)

where the proportion is well within an order of magni-
tude [9]. From the arguments presented in section III,



9

FIG. 10: The velocity field ~V calculated using a RANS pro-
gram for a wing with R = 2.1 × 105 and an angle of attack
α = 9.45◦. The movement of the air from the high pressure
side to the low pressure side is apparent, the phenomenon
that is responsible for wing-tip vortex formation, a form of
lift-induced drag. In this figure, ~V∞ = V∞x̂ and there is a
boundary condition at y = 0 such that ~Vy=0 = Vy=0x̂. Image
taken from Ref. [11].

it is clear that the lift and drag forces discussed therein
will scale with unit distance perpendicular to the cross-
section. However, Eq. (14) shows that, since the in-
crease in unit distance of the body perpendicular to the
flow increases the aspect ratio γ, it decreases the lift-
induced drag force. Thus, taller, thinner sails and keels
will tend to have larger lift-to-drag ratios and perform
better in windward conditions. For example, Ref. [19]
reports the computation, using RANS, of a lift-to-drag
ratio of CL/CD ' 12 for a keel at an attack/leeway an-
gle of α = 5◦ on a IACC yacht in standard windward
conditions.

In addition to influencing the lift-induced drag due to
the circulation, 3D effects give rise to other drags related
to the phenomenon of lift. Clearly, the circulation about
an object such as a sail or keel will be influenced by its
finite size. In particular, higher pressure on the down-
wind side of the sail or keel will force fluid (water or
air) around the tip of the body to the other side, as is
shown for a flat rectangular wing at an attack angle of
α = 9.45◦ in Figure 10. These flow lines were calculated
using a RANS computational program [11]. Such flow
lines give rise to the formation of wing-tip vortices at the
ends of keels and sails, as are seen in the wakes of yachts
sailing in the 2001-2002 Volvo Ocean Race in Figure 11.
These wing-tip vortices are present due to the pressure
gradient across a body and are lift-induced and thus con-
tribute to the lift-induced drag on the body from which
they originate. They also, however, are related to lift-

FIG. 11: Tip vortices, a form of lift-induced drag, created by
the sails of yachts sailing on a close haul, made visible by the
fog during the 2001-2003 Volvo Ocean Race. Photo by Daniel
Forster, taken from Ref. [20].

reduction because their formation reduces the velocity
difference (and thus the pressure difference) on opposing
sides of the keel or sail near its tip. Certainly, there is a
boundary condition that the pressures, and thus the ve-
locities of the flow on opposing sides of a sail, are equal
at edges of the sail.

Keels, however, are able to counter this wing-tip vortex
effect by having a bulb attached at their base. This bulb
not only discourages the transfer of fluid from the higher
pressure side of the keel to the lower pressure side, thus
discouraging wing-tip vortex formation, but it also con-
tributes to the righting torque MR of the yacht because
it can be heavy and significantly far from and below the
center of buoyancy of the yacht. For example, the keel
bulb on the BMW Oracle yacht to be raced in the 33rd

America’s Cup accounts for 19 of the yacht’s 24 tons [21].
In windward sailing conditions, sails may counter the

loss of lift and the increase of drag by working together.
Typically, IACC yachts use a mainsail (downwind of the
mast) and a jib (upwind of the mast) simultaneously. In
windward conditions, and if trimmed properly, the pres-
ence of the mainsail serves to increase the flow velocity
(and therefore decrease the pressure) on the leeward side
of the jib sail and the jib serves to prevent flow separation
from the leeward side of the mainsail. This proper trim-
ming requires setting the contours of the sails so that they
follow the natural flow lines of of the air, discouraging
separation. Indeed, this effect has been verified experi-
mentally and computationally using the kε model [10].

V. CONCLUSION

Ultimately, as has been mentioned, the determination
of the lift and drag coefficients for actual yacht compo-
nents must be left to experiment or numerical compu-
tation. These methods, if employed correctly, provide
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these coefficients for keels, hulls and sails as functions of
their orientation parameters (angles) in various flow ve-
locities, i.e., they are functions of the leeway angle λ, the
sail angle (relative to the boat) δm, the point of sail β
and the heeling angle Θ. For Froude scaling objects, such
as hulls, the coefficients can depend on velocity, as well.
The knowledge of these coefficients and how they vary
with these parameters is all that is needed to describe
the motion of a sailing yacht, simply, by integrating the
equation of motion ∂t

~Vyacht = 1
m

~F , where ~Vyacht is the
velocity of the sailing yacht being considered and ~F de-
pends on the lift and drag coefficients and the angles of
attack. This motion, due to the quirks of the physics
of fluids, can, theoretically, be at any direction except
directly into the wind. Indeed, as is seen in Figure 7,
IACC yachts can perform very well at angles as low as
30◦ from windward. Without a doubt, this is due to de-
sign that has been informed by the nature of fluids and
the ways in which they interact with bodies, namely, the
fluid mechanics and physics of sailing yachts.

APPENDIX A: DERIVATION OF
NAVIER-STOKES EQUATION FOR

INCOMPRESSIBLE FLUIDS

Consider a velocity field for a fluid, ~V = ~V (x, y, z, t),
describing the velocity of the fluid as a function of space
and time, and let ρ be the mass density of the fluid and
p = p(x, y, z, t) the pressure in the fluid. Additionally, let
the fluid be incompressible, such that the mass density ρ
of the fluid is constant in space and time, so that it obeys
the continuity equation

~∇ · ~V = 0. (A1)

Newton’s 2nd Law, describing the conservation of mo-
mentum for a particle of mass m in a fluid occupying a
volume ∆x∆y∆z, is given by

m
d

dt
~V = ~F∆x∆y∆z (A2)

where ~F is the force per unit volume acting on the fluid.
The evaluation of the time derivative of the fluid velocity
field requires careful consideration. Let the velocity field
be that of a steady flow so that, at time t, the motion
of a particle in the fluid is described by V (x, y, z, t) =
ux̂ + vŷ + wẑ. After a small change in time ∆t, the
particle is described by V (x + ∆x, y + ∆y, z + ∆z, t +
∆t) = (u+∆u)x̂+(v +∆v)ŷ +(w +∆w)ẑ where, by the
chain rule, ∆u = ∂u

∂x∆x + ∂u
∂y ∆y + ∂u

∂z ∆z, where similar
equations exist for ∆v and ∆w. Thus, ∆u/∆t = u∂u

∂x +

v ∂u
∂y + w ∂u

∂z . Writing similar equations for ∆v/∆t and
∆w/∆t, it is seen that the acceleration of a particle in
the steady velocity field is given by ~as = (~V · ~∇)~V . Of
course, in this steady flow, ∂~V /∂t = 0. However, if the
flow at some fixed point is changing as a function of time,
this partial derivative is non-zero. Thus, we see that, in
general,

d

dt
~V =

(
∂

∂t
+ ~V · ~∇

)
~V . (A3)

Thus, we can write Eq. A2, with m = ρ∆x∆y∆z, as

ρ∆x∆y∆z

(
∂

∂t
+ ~V · ~∇

)
~V = ~F∆x∆y∆z

ρ

(
∂

∂t
+ ~V · ~∇

)
~V = ~F . (A4)

The force per unit area ~F can be rewritten in terms of
the stresses on the fluid volume element being considered.
These stresses break down into “shear” and “normal”
stresses, being the forces per unit area that are parallel
and normal to the surfaces of the volume element, re-
spectively. The shear stresses are characterized by the
stress tensor

τij = −p δij + µ

[
∂Vj

∂xi
+

∂Vi

xj

]
(A5)

where δij is the Kroneker delta function and µ is the
viscosity of the fluid. The force per unit volume is written
in terms of the stress tensor as ~F = ~∇·←→τ . Thus, we can
rewrite Eq. A4 as

ρ

(
∂

∂t
+ ~V · ~∇

)
~V = −~∇p− µ~∇×

(
~∇× ~V

)
. (A6)

Eq. A6 is the vector form of the Navier-Stokes equation
for viscous, incompressible fluids. By rewriting the ~V · ~∇
term (see section III), this equation can be written as

∂

∂t
~V = −1

ρ
~∇p− 1

2
~∇V 2 + ~V × (~∇× ~V ) +

µ

ρ
∇2~V . (A7)

If a characteristic length x is used to rescale the lengths
xi → xi/x and a characteristic velocity is used to rescale
the velocities Vi → Vi/v, Eq. (A7) can be rewritten as

∂

∂t
~V = −1

ρ
~∇p− 1

2
~∇V 2 + ~V × (~∇× ~V ) +

1
R
∇2~V (A8)

where R = vxρ/µ is the dimensionless Reynold’s number
of the system.
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